java message service

marek konieczny

Agenda

* Introduction to message oriented computing

* basic communication models and domains

* Java Message Service API

* Communication API
* Message structure

e Selectors API

* Hands-on example, assignment

Message Oriented Middleware

* Integration issues in information systems

* Asynchronous communication.

* Message Oriented Middleware (MOM)

* Why we want to use MOM ?

« Easy integration of heterogeneous systems,

Good solution for the bottlenecks in system design,

Overall throughput of the system can increase,

Improvement in system architecture flexibility,

Allows to build geographically distributed systems.

Message Oriented Middleware

_—— . - .,

o

[Application A

o
»

Messaging API

Messaging Clients

JMS Client

[Application B

oY

r
b

Messaging API

o

Service Oriented Architecture

* Enterprise Service Bus (ESB) approach

* Messages are delivered asynchronously through the network,

» Application creates a message using simple API and then transport it
through the MOM,

* The messages are autonomous units, they contain all data and states
which are required by business logic.

* Event-driven approach

* The communication is done in asynchronous scheme,
* The messages are sent in efficient and robust way,

* They are self-described — contain all necessary context that allows to
recipients to process it in independent way,

 All components within the system are loosely-coupled.

Service Oriented Architecture

Before SOA 3 After SOA
Siloed - Closed - Monolithic - Brittle Shared services - Collaborative - Interoperable - Integrated

Architecture for SOA

 Centralized architectures

* A messages server (router or broker) is
responsible for delivering messages.

* Decentralized architectures

* Usually use IP multicast at the network
level,

* The server not responsible for routing,
it is done on network layer.

[JMS Client]

Message
Server

I

[JMS Client]

. 1 -
[Application A]

Router

Y

[Application B] [Application C]

Communication models for JMS

° Synchronous communication
* Both communication parties need to be active,
* Sender receives confirmation from receiver,
* Blocking calls,

* Scenarios when global authorizations are required (e.g. credit cards
authorization systems)

* Asynchronous communication

Both parties do not need to be active during communication,

Confirmations are not required,

Non-blocking calls,

Useful when massive communication processing is required,

Allows for efficient usage of hardware resources,

Point-to-Point domain

 Communication details

* Senders and receivers communicate via virtual channels known as
queues in both asynchronous and synchronous way,

* Message is received only by one receiver, communication 1-1,
* Sender can request for new messages at any time,

* The services are more coupled, the sender usually knows the receiver
and is aware of information the receiver is expecting.

Receiver
[Sender]-+[Queue },_.) _

Receiver

Publish-and-Subscribe domain

 Communication details

* Messages are published by the virtual channels called topics,

* Producers are called publishers, while consumers are called
subscribers,

* Messages are broadcast to all consumers, every subscriber receives a
copy of message, communication 1-many

* The services are less coupled than in point-to-point models (publishers
do not need to know how many subscribers are listening)

.) ..=¥ Subscriber
[Publisher] - +[Topic } ;: . .

e

- Subscriber

Java Message Service

* Background

* JMS is messaging API created by Sun Microsystem with cooperation
with various MOM vendors,

* Itisjust an abstract API not a messaging system — it is only a collection
of interfaces and abstract classes,

* The latest version is JMS 1.1, published in around 2002.

* API can be divided in 3 main parts

* General API (can be used for interactions with both queues and topics),
* Point-to-Point API,
* Publish-and-Subscribe API.

JMS General API

e Main interfaces

* ConnectionFactory, Destination, Connection, Session, Message,
MessageProducer, MessageConsumer,

* There are other classes for exception handling, message priorities and
persistence.

Message

"

: Connection Connection I—» Session Message |, . .
: factory producer |

Message o
consumer

" [Destination

- Administered .
. objects

% g pm EE W I EEE kT

JMS Point-to-Point API

e Main interfaces

* QueueConnectionFactory, Queue, QueueConnection, QueueSession,
Message, QueueSender, QueueReceiver,

* Most of the interfaces are similar as in the general API — all have Queue

prefix.
Message

IIIIIIIIIIIII -ﬂ

: "1
ueue conn.

: [Q frct]—o[Queue conn. Que}l © Queve | ..
: actory Session sender .
: J n
I n
: Queue .
. [Queue] receiver
!
. Administered ; .

]
N o

objects

% g pm EE W I EEE kT

JMS Point-to-Point (Impl.)

e Producer

Obtain reference to
QueueConnectionFactory,

Get reference to Queue,
Create QueueConnection,
Create QueueSession,
Create QueueSender,
Create Message,

Send Message.

e Consumer

Obtain reference to
QueueConnectionFactory,

Get reference to Queue,
Create QueueConnection,
Create QueueSession,
Create QueueReceiver,

Wait for message, implement
interface MessageListener.

JMS Publish-and-Subscribe API

e Main interfaces

* TopicConnectionFactory, Topic, TopicConnection, TopicSession, Message,
TopicPublisher, TopicSubscriber.

Message]
g Topic conn. - : Topic Topic
i [factory] : [topie conn. Session publisher |)
; : ' Topic o
: [Topic] ; subscriber
; Administered . .
‘* Objects A = ®m ® = ® ® ® ® ® ® ® § ® ® ® 1§ ®E ® ®E 1 ®E ®E ® 1 ®E ®E ®E 1 ®m ® =

N A B RN BN R

JMS Publish-and-Subscribe (Impl.)

e Producer

Obtain reference to
TopicConnectionFactory,

Get reference to Topic,
Create TopicConnection,
Create TopicSession,
Create TopicPublisher,
Create Message,

Send Message.

e Consumer

Obtain reference to
TopicConnectionFactory,

Get reference to Topic,
Create TopicConnection,
Create TopicSession,
Create TopicSubscriber,

Wait for message, implement
interface MessageListener.

JMS Message API

* The basic and most important class

* All data and events are transferred by the Message objects,

* The message does not tell receiver what to do.

* It consist of 3 parts
* The message header,
* Message properties,
* Data itself (payload or message body).

F___

"

I N\

| [Headers

r
1

[
| LProperties
-

I Payload

I
| N I
\ JMS Message

— m— = —

JMS Message Headers

e Basic information:

* 2 groups, divided by responsible parties: set by developers, set
automatically by the java message system,

* Both can be access by standard set and get methods.

 Automatic headers

* JMSDestination — defines a destination of a message,
* JMSDeliveryMode — defines persistent or not-persistent delivery mode,
* JMSPriority — set on producer, 0-4 normal and 5-9 expedited.

e Custom headers

* JMSReplyTo — defines a destination of a replay message,
* JMSType — optional header, defines type of a message.

JMS Message Properties

* Basic information:
* 3 types : application specific, JMS-defined and provider specific,
* They function as additional headers to message,
* The value of property: String, boolean, byte, double, int, long, or float.

* Application specific
* defines any additional data that can be attached to a message.
* JMS-defined properties

* Automatically set by the JMS provider,
* JMSXGrouplD, JMSXGroupSeq, JMSXUserlD, JMSXApplID ...

* Provider specific properties
* Automatically set by the JMS provider,
* Delivers propriety information of the JMS Provider.

JMS Message Payload

e Basic information:

* JMS Provider have to support 6 types of messages: Message and
TextMessage, StreamMessage, MapMessage, ObjectMessage,
BytesMessage,

* Message interface can be extended in order to provide support for other
types of messages (e.g. XML).

* Pure Message type can be sent

* if we want to send an event — no payload data

* TextMessage information

* Carries simple String data, standard get and set method can be use.

TextMessage textMessage = session.createTextMessage()
textMessage.setText ("Hello!");
topicPublisher.publish (textMessage)

JMS Message Selectors

e Basic information:

* Message filtering allows to limit narrow the messages distribution,

* Instead of filtering everything on the client side we can perform selection
on producer site.

topic = (Topic)ctx.lookup (topicName) ;

String filter = "your condition";
TopicSubscriber subscriber =
session.createSubscriber (topic, filter, true);

* Filtering in point-to-point domain:
* Message filtering is interesting on queues, once message is filtered it is
removed and not available to others,

* Here we can use priorities, the rules are first applied to messages with
higher priority.

JMS Message Selectors

* Selectors can be applied to message consumers:

* QueueReceiver, QueueBrowser, or TopicSubscriber,
* Message headers and properties can be used as data in constructing filters,

* There is no access to message body.

* Constructing selectors

* 1in order to construct rule we need to use SQL-92 conditional expression
syntax,

* We use identifiers for comparison — they come from properties and
headers (e.g. Name = '‘abc’ AND JMSPriority > 2),
* Literals are hard-coded to filter and compared to identifiers,

* Comparison operators compare them, they produce Boolean value true or
false. They include: algebraic comparator, and operators LIKE,
BETWEEN, IN, NOT and IS NULL.

Assignment

* Functional requirements:

* Create basic stock quotes broker,

* Stocks are grouped by the indexes, we have index1 (compi, comp2, comp3)
and index2 (comp4, comps),

* Clients can obtain updates of entire index or single stocks,
* System can update values of single stocks.

* Non-functional requirements:

* Think about durable subscriptions and security,
* Implementation should be done using Fuse Message Broker,
* Applications should use Maven and Spring as much as possible.

e Additional information:

* Please send your assignment in advance, use prefix [jms] name surname,
* You can use your own HW, expect questions regarding your impl.

References

* Presentation based on the following materials:

* Course materials from Network Services Implementation (CS),

« Java Message Service 2™ Edition, By Mark Richards, Richard Monson-
Haefel, David A Chappell, Publisher:O'Reilly Media,Released: May 2009.

 Additional materials:

* Fuse OpenSource website: http://fusesource.com/
* Please review and read the Message Broker docs.

ava
Message\
SEIVICE |

O'REILLY”

http://fusesource.com/

Demo session

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

